Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Low-luminosity active galactic nuclei (AGNs) with low-mass black holes (BHs) in the early universe are fundamental to understanding the BH growth and their coevolution with the host galaxies. Utilizing JWST NIRCam Wide Field Slitless Spectroscopy, we perform a systematic search for broad-line Hαemitters (BHAEs) atz≈ 4–5 in 25 fields of the A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE) project, covering a total area of 275 arcmin2. We identify 16 BHAEs with FWHM of the broad components spanning from ∼1000 to 3000 km s−1. Assuming that the broad line widths arise as a result of Doppler broadening around BHs, the implied BH masses range from 107to 108M⊙, with broad Hα-converted bolometric luminosities of 1044.5–1045.5erg s−1and Eddington ratios of 0.07–0.47. The spatially extended structure of the F200W stacked image may trace the stellar light from the host galaxies. The Hαluminosity function indicates an increasing AGN fraction toward the higher Hαluminosities. We find possible evidence for clustering of BHAEs: two sources are at the same redshift with a projected separation of 519 kpc; one BHAE appears as a composite system residing in an overdense region with three close companion Hαemitters. Three BHAEs exhibit blueshifted absorption troughs indicative of the presence of high column density gas. We find that the broad-line-selected and photometrically selected BHAE samples exhibit different distributions in the optical continuum slopes, which can be attributed to their different selection methods. The ASPIRE broad-line Hαsample provides a good database for future studies of faint AGN populations at high redshift.more » « less
-
Abstract We present a well-designed sample of more than 1000 type 1 quasars at 3.5 < z < 5 and derive UV quasar luminosity functions (QLFs) in this redshift range. These quasars were selected using the Sloan Digital Sky Survey (SDSS) imaging data in the Stripe 82 and overlap regions with repeat imaging observations that are about 1 mag fainter than the SDSS single-epoch data. The follow-up spectroscopic observations were conducted by the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) as one of the BOSS ancillary programs. Reaching i ∼ 21.5 mag, our sample bridges previous samples from brighter and deeper surveys. We use a 1/ V a method to derive binned QLFs at 3.6 < z < 4.0, 4.0 < z < 4.5, and 4.5 < z < 4.9 and then use a double power-law model to parameterize the QLFs. We also combine our data with literature QLFs to better constrain the QLFs across a much wider luminosity baseline. The faint- and bright-end slopes of the QLFs in this redshift range are around −1.7 and −3.7, respectively, with uncertainties from 0.2 to 0.3 to >0.5. The evolution of the QLFs from z ∼ 5 to 3.5 can be described by a pure density evolution model (∝10 kz ) with a parameter k similar to that at 5 < z < 7, suggesting a nearly uniform evolution of the quasar density at z = 3.5–7.more » « less
-
Abstract Studies of rest-frame optical emission in quasars at z > 6 have historically been limited by the wavelengths accessible by ground-based telescopes. The James Webb Space Telescope (JWST) now offers the opportunity to probe this emission deep into the reionization epoch. We report the observations of eight quasars at z > 6.5 using the JWST/NIRCam Wide Field Slitless Spectroscopy as a part of the “A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE)” program. Our JWST spectra cover the quasars’ emission between rest frame ∼4100 and 5100 Å. The profiles of these quasars’ broad H β emission lines span a full width at half maximum from 3000 to 6000 km s −1 . The H β -based virial black hole (BH) masses, ranging from 0.6 to 2.1 billion solar masses, are generally consistent with their Mg ii -based BH masses. The new measurements based on the more reliable H β tracer thus confirm the existence of a billion solar-mass BHs in the reionization epoch. In the observed [O iii ] λ λ 4960,5008 doublets of these luminous quasars, broad components are more common than narrow core components (≤ 1200 km s −1 ), and only one quasar shows stronger narrow components than broad. Two quasars exhibit significantly broad and blueshifted [O iii ] emission, thought to trace galactic-scale outflows, with median velocities of −610 and −1430 km s −1 relative to the [C ii ] 158 μ m line. All eight quasars show strong optical Fe ii emission and follow the eigenvector 1 relations defined by low-redshift quasars. The entire ASPIRE program will eventually cover 25 quasars and provide a statistical sample for the studies of the BHs and quasar spectral properties.more » « less
An official website of the United States government
